Electrochemistry in diagnostics

Timo Korpela, Ph.D
Senior Fellow, Technology Research Center, University of Turku
biorecognition

• Life in molecular level is organized according to hierarchy of recognition and non-recognition. Enzyme-substrate, nucleic acids, immune reactions, etc. – called "bioaffinity".

• Currently molecules in body fluids are predominantly analyzed by exploiting their bioaffinity.
Procedure

- Label = measurable marker molecule or atom
- Number of molecules A is determined with labelled antibodies binding to A (Ab-L):
 - $(X$ copies of) A + $(Y$ copies of) Ab-L \rightarrow
 - $(X)A$-Ab-L + $(Y-X)$ Ab-L ; $(Y>X)$
- Mixture is purified to contain pure A-Ab-L
- Number of A-Ab-L is measured = number of L
How L is measured?

- Fluorescent or luminescent labels are currently used and an evident choice for future.
- L is induced or "excited" to produce light emission.
- Excitation is done with light or with electrical pulses.
Basic electrochemistry

- **Electrolyte**: water solution containing salts. Salts form ions in water and allow electric current through water.
- **Electrodes** (metal or graphite) connect electricity source to electrolyte.
- Inert or reactive electrodes.
- Electric current from anode to cathode effects electrode reactions, charge or discharge of ions in solution.
- Water decomposition, example.

Electrolysis: Splitting water with electricity to produce hydrogen and oxygen:
Electrode reactions

- Different molecules are reduced or oxidized at different potentials on inert electrodes.
- Water decomposition starts at a certain voltage. Not possible to use this area for excitation of labels.
- Redox voltage of L must be less that that of water.
Potential window at inert anode is limited for exciting L

- Bioaffinity reaction must be done in water.
- Organic solvents can decrease decomposition of water and allow higher applied voltages to excite L.
- Still, limited number of L are measurable (Roche:rutheniumbipyridium)
- UV –excitation not possible
How to widen the potential window in water?

• Excitation of labels is carried out by very high energy, “hot electrons” at CATHODE.

• Hot electrons are achieved by forcing electrons to “jump” over an insulator barrier with pulsed voltage of 10-30 V.

• Normal electrons jump 1-2 nm BUT hot electrons jump up to 100-200nm distance from electrode. Gas evolution occurs only at high voltages → strong redox reactions possible in 100 times higher volume.
Highly reducing and oxidizing conditions are simultaneously achieved by injection of hot electrons into aqueous solution from cathodically pulse-polarized thin film-coated electrodes.
The distance from the working electrode, within which HECL occurs, has been estimated from e_{aq}^- reactivity and diffusion coefficients to be on the order of 200 nm.

- Labeled-antibody: 15 nm
- CRP: 8 nm
- Catching antibody: 15 nm

Insulation layer
Cathode
IPR

• Rosche Diagnostics owns patents on excitation on inert metal anode. Applied in practise world widely.

• Labmaster Ltd. Turku, owns patents on excitation of labels on insulator-covered cathode (>10 inventions).

• ”hot electron electrochemistry” - ”HECL”, development stage for POC-diagnostics. Very potential technology for future.
Advantages of cathodic excitation over old methods

• Water solutions are used throughout, no need to change to organic ”measuring” solutions.
• Any kind of labels can be excited to produce emission from UV to IR range.
• ”Time-resolved” technology can be used to increase sensitivity (require UV excitation and long-life luminescence label).
• Internal calibration from insulator´s fluorescence signal.
• Cathode can be cheap metal because it is covered with inert layer → single used test sticks → POC
• Multiplexing easy
• Cheap simple measuring instrument, no optics
Time-resolved measuring principle

Excitation pulse time 0.3 ms

Counting time 8 ms
Simultaneous excitation of short-lived and long-lived luminescence displaying labels using HECL

Tb(III) chelate + Ru(bpy)$_3^{2+}$

Eu(III) chelate + FITC
Cells for multiplexing and printable electrodes
Strictly Private and Confidential. Do not copy.

Analyte (sample) → Membrane → Capture Antibody → Labeled Antibody → Silicon chip

Capture Antibody

Silicon chip

PMT Measuring HECL

\(\epsilon_{hot} \) \(\epsilon_{hot} \) \(\epsilon_{hot} \)
The comparison methods: **Roche Hitachi 917 Tina-Quant® CRP** (latex) high sensitive assay and **Innotrac Aio! usCRP** immunofluorometric assay.

Figure 1. Linearity and variation of standards usCRP assay performed by PiIA ECL analyser.

Figure 2. Correlation between usCRP assay performed by PiIA ECL analyser and two reference methods using plasma samples; concentration range < 10 mg/L.

Figure 3. Correlation between whole blood and heparin plasma samples. Whole blood samples have been corrected for hematocrit.
What is needed for using HECL and Time-Resolved Detection in Analysis?

- A pulse generator
- Electrochemical cell (e.g. a cassette)
- Photon counter
- A laptop computer or internal microprocessor

PiiA ECL analyser
Thank you!
ご清聴ありがとうございました